向大海要水来制氢是未来发展的重要方向,目前最常用的方式为先淡化预处理后制氢,但这类技术严重依赖大规模淡化设备,工艺流程复杂且占用大量土地资源,进一步推高了制氢成本与工程建设难度。
因此,自上世纪 70 年代初以来就一直有科学家提出,海水可否直接电解制氢呢?然而,迄今为止,未有突破性的理论与原理彻底避免海水复杂组分对电解槽制氢的影响,可规模化的高效稳定海水直接电解制氢原理与技术仍是世界空白!
现在,中国工程院院士、深圳大学教授谢和平团队首次实现海上风电可再生能源和海水直接电解制氢一体化,并在大海中利用海上风电驱动海水制氢。
微信公众号“深圳大学”6月22日消息,2024年6月21日,深圳大学谢和平院士团队在Nature Communications上发表了题为“In-situ direct seawater electrolysis using floating platform in ocean with uncontrollable wave motion”的研究成果。
该研究基于谢和平院士团队2022年11月30日在Nature上发文开创的相变迁移海水直接电解制氢全新原理与技术,围绕在真实大海中实现海水直接制氢面临的海水多场耦合复杂工况带来的波动性等科学难题与工程空白,提出了抵抗真实大海不可控海洋波动环境的海水直接制氢全新路径与技术;系统研究了不同海水组分(深圳湾、兴化湾)浓度变化导致的界面蒸气压差差异,阐明了浓度动态变化下相变迁移过程的自调控自适应机制;首次揭示了在不同海浪波形(恒流、乱流等)、波高、波宽条件下的相变迁移过程规律与影响机制,表明了在海浪一定程度冲击下有利于防止界面浓度极化从而提升相变传质效果;基于界面传质面积动态变化规律建立了真实海浪波动下的相变迁移海水制氢理论模型,并在实验室模拟海洋环境下实现了500h以上稳定性,未发生催化剂腐蚀、毒性和腐蚀性,充分验证了电解系统、防水透气层等核心关键部件在复杂环境下的耐受性与抵御能力,为在真实大海不可控波动环境下规模化海水直接电解制氢提供了理论指导并奠定未来产业化发展基础。